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1. INTRODUCTION
1.1 OVERVIEW

The ability to conduct long term experiments in space has necessjitated
understanding the local environment of the measuring platform in order to
be able to sort out the perturbations generated by the measuring platform
on the phenomena being measured. A number of attempts have been made to
model, in a piecemeal fashion, the effect of contamination on sensors flown
on the Space Shuttle, Many of the earlier attempts have treated
contamination as being due solely, or primarily, to the exhaust products of
thruster motors. (1-3) Of course, spacecraft contamination is indeed
related to the flow fields of the exhaust products of spacecraft engines,
as has been demonstrated in a Monte Carlo code developed for that specific
purpose of understanding the backflow of exhaust products into the shuttle
bay.(h) This report describes calculations performed with SOCRATES
(Spacecraft/Orbiter Contamination Representation Accounting for Transiently
Eyit:ed Epecies) which has been developed with the idea of addressing in a
comprehensive manner the problem of contamination on spacecraft. SOCRATES
builds on a plume code developed for a different application(s) and tries
to assess the flow fields of contaminants in the low earth orbit
environment taking into account not only scattering but Treactive
collisions. The importance of this effort arises from the fact that at
orbital velocity in low earth orbit (7.7 km s’l) spacecraft surfaces as
well as the gaseous envelcpe of the spacecraft are constantly bombarded by
atomic oxygen. The velocity distribution of the O atoms is typical of
ionospheric temperature, measured as 750 = 50 K on one occasion. (6) At
orbital velocity the energy of O is 4.9 eV, so the potential for undergoing
endothermic reactions is great. The timeliness of code development is
particularly propitious because of the availability of data from some Space
Shuttle flights where diagnostic instruments, e.g. mass spectroneters(7’13)
and plasma diagnostica(la) were flown. It has been clearly shown in these

experiments that gases from some of the exhaust jets are reflected into the




exhaust jets are reflected into the bay of the Space Shuttle, the amount
being dependent on the orientation of the VRCS with respect to the velocity
vector and with respect to the shuttle surtaces.(lo'IJ)

The eventual aim in the development of SOCRATES is the inclusion of
gas phase neutral-neutral reactions, neutral-surface reactions, and
neutral-ion reactions and to validate the code asgainst the measurements
reported above as well as against those which measured surface
interactions. (13)  This report presents calculations performed with the
first module of SOCRATES, which is the Monte Carlo module for far field

neutral gas interactions.

1.2 METHODOLOGY

The direct simulation Monte Carlo method involves storing & discrete
number of molecules (via their velocities, positions, and other pertinent
information) in a computer. The solution region is broken up into a number
of separate cells, and the solution is stepped forward in time in a two
stage process., First, the molecules are advanced along their trajectories
by an amount appropriate to their velocity and a time increment, at,. In
this first stage some molecules will leave the solution region, and some
will be introduced as determined by the boundary conditions for a
particular problem. The second stage is to simulate collisions in each
cell appropriate to at, so that collision frequencies are properly
simulated. A basic hypothesis of the method is that if the time step is
made small enough, the processes of translations and collisions can be
uncoupled in this manner.

Periodically, the solution is sampled by accumulating statistical sums
of number densities, velocities and other basic properties. The solution
is run repeatedly until statistical deviations are reduced to a desired
limit, and then physically meaningful output quantities are computed from
the statistical sums. The number of molecules represented is typically
many thousand at a time, which is vastly fewer than the number occurring in
virtually all real flows. Hence, the conatruction of a dynamically similar

flow to be simulated in the computer is an essential feature of the method,




In order to successfully apply this technique to the contamination
flow fields of interest, consideration must be given to the basic character
of these flows, A molecule leaving the shuttle can be expected to
experience its first collision with an atmospheric species at a distance,
9., from the shuttle which depends on the local conditions. Typically, for
unperturbed space, &, may be on the order of a few hundred meters at an
altitud: of 200 km, some tens of kilometers at 400 km, and hundreds of
kilometers at an altitude of 600 km. The solution region must extend to
several . if the scattering process is to be accurately represented, which
is necessary for calculating atmospheric backscatter or radiative emission
resulting f{rom these collisions.

A fundamental problem arises in describing accurately the interaction
of the scattered flow with the shuttle as 2. becomes large, since cell
sizes must be small compared to shuttle dimensions. The required number of
cells for such a complete solution makes the complete calculation
intractable. However, advantage can be taken of the separation of length
scales to achieve the same result with much less computational effort.
This is done by Bseparating the solution into an "inner" and an "“outer"
solution, the latter being pertofmed first,

The outer solution is performed on a length scale of the interaction
of the contaminants with the atmosphere, i.e., several .. On this length
scale the dimensions of the shuttle are unimportant, and the sources of
contaminants are treated as emanating from the origin. There are no
shuttle surfaces considered in the outer solution, and the smallest ceclls
are large with respect to shuttle dimensions. The outer solution is
generated by the first module of SOCRATES, which is described in this
paper.

The inner solution is performed by the second module of SOCRATES,
which is still under development. The inner solution comprises the
immediate shuttle vicinity, and takes as a boundary condition the results
from the outer solution for the inwardly directed fluxes of the species in
the simulation. The inner solution handles the detailed interaction of the
contaminant cloud with the shuttle vehicle, as well as direct contamination
from sources such as the backflow from a thruster, In the inner solution,

all sources are properly located on the vehicle.
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Once the inner and outer solution have been finished, then ion-neutral
interactions will be included in the code. This modification will require
a number of detailed kinetic data as well as inclusion of electric fields

into the model.




2. CASE DEFINITIONS
2.1 PHYSICAL PARAMETERS

Calculations have been performed for the interaction between the
ambient atmosphere and the steady state exhaust from a Space Shuttle VRCS
(Vernier Reaction Control System) engine. It should be stressed that this
choice is arbitrary and is not a 1limit of SOCRATES. A suite of nine
calculations were performed, for altitudes of 200, 400, and 600 km, and
angles of attack between the oncoming wind and the centerline exhaust
direction of 0, 90, and 180 degrees. (A 180° angle of attack corresponds
to firing the VRCS in the upwind direction, while 0° corresponds to the
downwind direction.)

The predicted composition of the exhaust is shown in Table 1 and is
based on thermodynamic equilibrium at 3000 K (quoted by Pickett et al.(g)).
The constituents of the exhaust interact with the ambient atmosphere, whose
composition is given in Table 2.

The VRCS engines release gases at a velocity which is typical of
chemical rockets, about 3 km/s. Hence, the relative velocity between
exhaust and atmospheric species varies from about 4.7 to 10.7 Kkm/s,
depending on the angle between the exhaust and atmospheric velocity
vectors. For atomic oxygen colliding with water, for example, this
corresponds to an energy range of about 1 to 5 eV. Therefore, a
substantial range of collision energies is available depending on the

relative velocity between the exhaust and atmospheric species.
2.2 COORDINATE SYSTEM

A Cartesian coordinate system was used with its origin at the shuttle
and the +X direction fixed as the direction of shuttle motion. This means
that for an observer fixed with respect to the shuttle, the atmospheric
wind is heading in the -X direction. For the 0° angle of attack cases the

centerline exhaust direction is also in the -X direction, while it was




taken to be in the +Z direction for 90° and +X direction for 180° angles of
attack. Hence, the X-Z plane is a symmetry plane for all cases, while the

0° and 180° cases are also axially sysmetric with respect to the X axis.
2.3 FAR FIELD LINE-OF-SIGHT INTEGRATIONS

As was discussed in Section ], the scale lengths for the interactions
were substantially different in many of the cases, making a common spatial
scale impractical. Hence, when comparing results at different altitudes,
the reader should remember that the preaentation length scales may be quite
different. In many cases the results are presented as integrated along the
Y direction, which shows how they would appear to a distant observer. This
is mainly done in order to reduce the dimensionality of the presentation,
while retaining substantial physical meaning. The presentation of
quantities which vary as a function of three spatial d{mensions is not
straightforward on two dimensional paper.

The far field integrations are presented in two forms: gray scale and
contour plots. The gray scale plots have the advantage that they give an
immediate visual impression of the relative magnitude of the gpatial
variation of a quantity. The contour plots have the advantage that they

can be more quantitatively read.
2.4 NEAR FIELD LINE-OF-SIGHT INTEGRATIONS

Finally, an attempt was made to calculate the quantities as they would
be seen by an observer located within the shuttle bay as a function of look
angle. Such calculations can only be done accurately after the inner
solution portion of SOCRATES is complete, at which time substantially more
detail would be expected.

When a particular viewing direction is considered from the shuttle, it
is represented by the angles « and B. These angles are illustrated in
Figure 1, which shows an arbitrary viewing direction represented by the
viewing direction unit vector Iv. a is the angle between the +X direction
and Iv, and B is the angle between the +Y direction and the projection of

Iv into the Y-Z plane. Hence, Iv is represented in terms of a and B as

-6 -




e

i, = cos(u)rx + sin(a)cos(ﬁ)fy + sin(a)cos(p){z . (1)

This definition was chosen since for the axisymmetric cases there is no B
dependence for quantities integrated along a line of sight. The near field

results will also be shown for both gray scale and contour plots,

TABLE 1
Shuttle Engine Combustion Products”

Mole Molecular
Species Fraction Weight (AMU)
H,y0 0.33 18
N, 0.31 28
H, 0.16 2
co 0.13 28
co, 0.042 44
03 0.002 32
NO 0.001 30
OH Trace 17
N,0 Trace 44

* cCalculated composition assuming thermodynamic equilibrium at the

combustion temperature. Results given in NASA Handbook and quoted by
Pickett et al.

TABLE 2
Composition of the Low-Earth Orbit Atmosphere(ls)
(Molecules/cm3)

Altitude (km)
Species 200 400 600
H 1.1x105
0 4.6x107 4.8x107 8.3x107
Ny 1.7x10° 6.2x103 5x102
0, 1.2x108 1.5x103 4.4
-7 -




+X
— WIND DIRECTION
y (-X DIRECTION)

Figure 1. An arbitrary viewing direction represented by a unit vector, Iv,
within the SOCRATES cartesian coordinate system. a is the angle between

the +X direction and fv, and B is the angle between the +Y direction and

the projection of fv into the Y-Z plane.
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3. SCATTERING RESULTS

Figures 2-5 contain panels of the H;0 column density for the nine
calculations. Figures 2 and 3} show the column densities obtained by
integrating along the Y direction, in gray scale and contour form,
respectively. Figures 4 and 5 show the column densities obtained by
integrating along various directions from the shuttle bay, as a function of
the look angles o and A defined in the previous section. These figures
make it clear that the choice for the look angles provides results which
are independent of B for the axisymmetric cases. In the spatial plots
(Figures 2 and 3), the atmospheric wind is approaching from the right. The
three left panels show the altitude variation for aligned (0°) plumes. The
effect of the atmospheric wind increasingly confining the plume as the
altitude is decreased can be seen clearly in the Figures, even with the
varying length scales. For the 90° angle of attack cases (the center
columns) the plume is blown back substantially within the first kilometer
at 200 km altitude, but it takes about ten kilometers for substantial
turning to be evident at 400 km. At 600 km the plume seems largely
unaffected by the atmosphere. Qualitatively similar results are evident
for the retrofire (180°) cases shown in the right column. Figures 6-9 and
10-13 show the corresponding information for CO; and H;, respectively.

One aspect of the rarefied nature of these flows is that light
molecular weight species tend to diffuse much more readily than the heavier
species. To some extent this is evident in comparing the H; to the Hy0 or
CO; column densities in the previous figures. The point can be seen more
clearly in Figure 14, which compares the H; and H,0 number densities at a
position 2.1 km downstream from the exit plane for the 200 km, 0° case.
Although the exhaust contains approximately twice as much H;0 as H, (Table
1), [(H;0] = 2.8([H;] on the axis, and 0.39(H;] on the edge of the plot. The
enhanced diffusion of the H, causes it to be relatively depleted in the
dense regions, and relatively more dJominant in the wing regions., As will
be seen, this behavior can also have implications for radiation

contamination,
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4. TV COLLISIONS

An important channel for absorbing the high collision energy between
the ambient O atoms and the plume is the ccllisional excitation of
vibrational modes of plume molecules (particularly the heteronuclear
molecules), e.g.

(2)

(o] + "20 - H20(03-1) + 0

fast slow

HyO(vy=1) = Hy0 + hv (2.7 ) (3)

This reaction has been studied both theoretically and experimentally, and
found to be very fast(17-19) 15 this work we have used the value ky =
[l.2x10"16T1'JQe(—10730/kT)] (Ref. 5). Using this rate coefficient and the
known 17 msec radiative lifetime of Hzo(v3-l) we can calculate the contours
of the 2.7u radiation caused by the interaction of fast O atoms with H,0
from the plume. This is shown in Figures 15-18, again for all the cases
considered. In a similar fashion we can calculate the emission in the 4.3un
band excited by the collision between fast ambient O atoms with CO; in the
exhaust of the VRCS engines:

0]

+ COZ - COZ(VJ'l) + 0 (“)

fast slow

COZ(VJ-I) - COZ + hv (6.3“) (5)

Here, the rate coefficient, k,, is less well known and we have used k, =
[J.leO'lGTz'lae(—6'74/kT)] (Ref. 5). The results are presented in Figures
19-22.

The gray scale utilized in these figures encompasses five orders of
magnitude, versus two for the column density figures of the previous
section. The reason for this is that there is a well defined vacuum limit
for species densities, whereas the collisionally induced emission depends
on an interaction with the atmosphere, and becomes increasingly tenuous as
the altitude is increased. The spatial extent of the emission at 0 and 90

degrees angle of attack is greater than the density, however, even without
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Figure 15.
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A panel of gray scale plots showing the H,0 v, emission at 2.7
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the scale change. This is because the small portion of the flow which has
a relatively large initial upstream velocity component suffers higher
energy collisions, and is more likely to produce emission. The importance
of this portion of the flow is enhanced for collisionally induced emission
relative to density.

The total solution region emission for these processes is presented in
Table 3. It can be seen that the effect of angle of attack is substantial
for both mechanisms, while altitude has a lesser effect between 200 and 400
km. For the 600 km cases, there is substantial radiation outside of the
solution region, though it is spread over such a vast region that the

neglected portion is not important.

Table 3
Total Solution Region Emission (Watts/Sr)

Case Hy0(vy) €O, (vy)
(Alt., A.0.A) (2.7 ) (6.3 w)
200 Km, 0° 29, 0.28
200 km, 90° 130, 1.7
200 Km, 180° 250, 4.0
400 Km, 0° 15. 0.14
400 Km, 90° 160. 2.3
400 Km, 180° 310, 6.2
600 Km, 0° 0.76 0.0082
600 Km, 90° 14, 0.22
600 Km, 180° 29, 0.58
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5. REACTIVE COLLISIONS

We consider in this section the possibility that reactions which do
not proceed at room temperature due to a large activation energy might
become important in low earth orbit because of the orbital velocity. The
reactions which we consider here represent species which are important

exhaust products of VRCS engines:

*
Ofage * HzO ~ OH" + OH (6)
) + H oH™ + H (7)
fast 2"
*
Ofast * €Oz - o + 0 (8)

There are some high temperature measurements for all three reactions.
However, before we present the results of the calculations, a discussion of
each of the reactions and the rate coefficients used is warranted.

Reaction (6): The reaction to produce ground state OH is endothermic by
0.73 eV, but at orbital velocity it has an excess energy of 1.86 eV (Ecy
for O + Hy0 at 7.7 km 5”1 is 2.59 ev if the velocity of the exhaust is
ignored. 1If the velocities are added, i.e, at e = 180°, then the reaction

has an excess energy of 4.5 eV). Since o, for OH = 3738 em} (2.7 n or

e
0.46 eV), OH" can be formed at v'' = 3 for the scenario where the exhaust
is at 90° with respect to direction of travel. At 180° the reaction can
excite OH into the A (2:*) state, which lies at 32684 cm! (4.03 eV) above
the ground state. (20)  This possibility would lead to emission of intense
ultraviolet-visible 1light, since the AsX transition is allowed, the
radiative lifetime being 0.7 us.

The rate coefficient for this reaction has not been measured at
energies corresponding to orbital energies. However, Albers et a1, (21)
have reported high temperature measurements which yield a rate coefficient,

kg, of 6.6 x 107 11¢7(17300/kT) ;3 -1 -1,

molecule For the purpose of
this work we have taken the available rate constant and adjusted the
activation energy to account for the energy of the first vibrational state

and (as a separate reaction) the A (2:*) state,
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Reaction (7): High temperature measurements by Miyauchi et a1, (22) give kg

,n-laTe-(AAGO/T) 3 molec s—l. Cthzr wmeasurements have been

= 3 v cm”
reported by Schott et al.,(23) Pamidimukkala and Skinner,(za) and by
Marshall and Fontijn(zs) with slightly varying results. We have used the
data of Miyauchi et al. The reaction is endothermic by 0.09 eV, while in
low earth orbit it has an excess energy of 0.45 eV at 90° collision and 0.9
eV at 180° collisions. Thus only vibrationally excited OH can be formed.
For the purpose of this calculation we have also adjusted the activation
energy to reflect the energy of the first vibrational state.

Reaction (8): This reaction is endothermic by 0.33 eV, At orbital velocity
and at 90° collision angle it has an excess energy of 3.26 eV, while at
180° collision angle it has an excess energy of 4 eV, In either case, the
energy is not enough to form either 0, or CO in excited electronic states.
Vibrational excitation of 0, is not important since it cannot radiate this
energy. This means that vibrational excitation of CO is the only channel
left for important internal excitation. Shock tube measurements yield a
rate coefficient of 2 x 107!! cm3 molecule™! s~1 (Baber and Dean(26)) we
have again adjusted this rate coefficient to take into account the
activation energy.

Table 4 presents a summary of the rate coefficients used in these
calculations and thermochemical data for the individual reactions. Figures
23-26 show the results for reaction (6a) (with vibrationally excited OH as
a product), which can be compared with Figures 27~30 showing the results of
reaction (7). Note that in these figures the scale was changed between the
two reactions to reflect the lesser emission resulting from reaction (7).
This can be seen more easily in Figure 31, for the single case of 200 km
altitude and 0° angle of attack. The lesser amount of Hy in the plume and
the higher activation energy make the mechanism of reaction (7) generally
less effective. The exception to this rule is when wide angle areas are
considered and H; may be much more effective at arriving at the location
prior to excitation,

Figures 32-35 show the total OH emission resulting from reactions (6a)
and (7), which can be compared with the result of the generally dominant
H)O mechanism in Figures 23-26. The scales are the same in these two sets

of figures, and it can be seen that the total OH emission curves show
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Figure 23. A panel of gray scale plots showing the OH vibrational emission

at 2.7 um as a result of the reaction of O + H20 - OH* + OH.
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Figure 24. A panel of contour plots showing the OH vibrational emission at

2.7 um as a result of the reaction of O + H20 - OH™ + OH.
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Figure 25. A panel of gray scale plots showing the OH vibrational emission

at 2.7 pym as a result of the reaction of O + H20 - OH* + OH.

The emission

is shown as a function of look angles for different viewing directions from

the shuttle bay.
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Figure 26. A panel of contour plots showing the OH vibrational emission at
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Figure 27, A panel of gray scale plots showing the OH vibrational emission

at 2.7 um as a result of the reaction of O + H2 - OH® + H.
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Figure 28. A panel of contour plots showing the OH vibrational emission at

2.7 um as a result of the reaction of O + H2 - OH* + H,
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Figure 29. A panel of gray scale plots showing the OH vibrational emission
at 2.7 om as a result of the reaction of O + HE ~ OH® + H. The emission is
shown as a function of look angles for different viewing directions from
the shuttle bay.
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Figure 30. A panel of contour plots showing the OH vibrational emission at

2.7 um as a result of the reaction of O + H2 - OH® + H.

The emission is

shown as a function of look angles for different viewing directions from

the shuttle bay.
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Figure 32. A panel of gray scale plots showing the total OH vibrational

emission at 2.7 um as a result of the reactions O + H20 - OH® + OH and 0O +

H2 - OH*® + H,
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Figure 33. A panel of contour plots showing the total OH vibrational

emission at 2.7 um as a result of the reactions O + H20 - OH® + OH and O +

H2 - OH* + H,
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Figure 34, A panel of gray scale plots showing the total OH vibrational

emission at 2.7 um as a result of the reactions O + H20 - OH" + OH and O +

H2 - OH* + H.

The emission

is shown as a

function of

look angles for

different viewing directions from the shuttle bay.
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Figure 35. A panel of contour plots showing the total OH vibrational
emission at 2.7 ym as a8 result of the reactions O + H20 - OH* + OH and O +
H2 - OH® + H. The emission is shown as a function of look angles for
different viewing directions from the shuttle bay,
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filled in regions at wide angles which are not present for the H,0
mechanism alone. The difference between the two curves is the Hj, mechanism
which, due to the greatly enhanced diffusivity of Hjy, shows up at the wide
angles.

In comparing Figures 15-18 with Figures 32-~35, it can be seen that
comparable emission is predicted for the reactive mechanisms (Reactions 6a
and 7) and T-V mechanism (Reaction 2). This suggests that the reactive
mechanism should be considered in future 2.7u emission calculations.

The predicted ultraviolet emission from reaction (6b) (with
electronically excited Od as a product) is shown in Figures 36-39 for all
cases. The very high activation energy for this mechanism results in an
emission profile which is quite different from previous density and
emission profiles. In particular, the 200 km 0° <case only has
contributions from the very small portion of the flow which is predicted to
turn and head back upstream. The model was not designed to be accurate for
that portion of the flow, so such results should be considered preliminary.

The predicted CO vibrational emission from reaction (8) is shown in
Figures 40-43 for all cases. In comparing these results to the direct CO,
excitation shown in Figures 19-22, it is once again seen that the
signatures are generally predicted to be comparable, although in this case

the wavelength is shifted slightly for the CO vibrational emission.

TABLE 4
Rate Coefficients Used in SOCRATES
k = ATMexp(-E,/kT)

E, oH

REACTION A n (kcal/mole) (kcal/mole)
2. 0+ Hy0 » 0 + Hy0(v3) 1.2(-16)  1.34¢  10.73 10.73
3. 0 +COp -+ 0 + COz(vy) 3.5(-21)  2.18 6.74 6.74
6a. O + Hy0 = OH + OH(v=1) 6.6(-11)  0.00  28.00 28.0
6b. O + H,0 -+ OH + OH(A?C*) 6.6(-11)  0.00 110.20 109.7
7. 0 + Hy = H + OH(v=1) 3.0(-14)  1.00  19.60 12.6
8. O + COp » 0, + CO(vel) 2.0¢-11)  0.00  14.30 14.3
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OH UV EMISSION FROM O+H50
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Figure 36. A panel of gray scale plots showi_n_g the OH ultraviolet emission
at 306.4 nm as a result of the reaction O + H,0 +» OH(A) + OH.
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Figure 37. A panel of contour plots showing the OH ultraviolet emission at

306.4 nm as a result of the reaction O + H,0 » OH(A) + OH.
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Figure 38. A panel of gray scale plots showing the OH ultraviolet emission

at 306.4 nm as a result of the reaction O + H,0 -+ OH(A) + OH.

The emission

is shown as a function of look angles for different viewing directions from

the shuttle bay.
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Figure 39. A panel of contour plots showing the OH ultraviolet emission at

306.4 nm as a result of the reaction O + H,0 » QH(A) + OH.

The emission is

shown as a function of look angles for different viewing directions from

the shuttle bay.
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CO EMISSION AT 4.6 um FROM 0+CO,
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Figure 40, A panel of gray scale plots showing the CO vibrational emission
at 4.6 um as a result of the reaction of O + CO2 — CO* + 02.
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Figure 41,

A panel of contour plots showing the CO vibrational emission at

4.6 um as a result of the reaction of O + CO2 - GCO* + O2.
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Figure 42. A panel of gray scale plots showxng the CO vibrational emission

at 4.6 ym as a result of the reaction of O + COz - CO™ + 02.

The emission

is shown as a function of look angles for different viewing directions from
the shuttle bay.
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Figure 43, A panel of contour plots showing the CO vibrational emission at

4.6 um as a result of the reaction of O + CO2 = CO* + 02.

The emission is

shown as a function of look angles for different viewing directions from

the shuttle bay,

- 56 -




6. SUMMARY

SOCRATES is already an effective tool, which will become even more so
as the planned additional capabilities are added. It haa been used to
systematically investigate the effects of altitude and angle of attack on a
variety of scattering, excitation and reactive mechanisms. A major new
result from this work is that reactive mechanisms are predicted to be as
important as collisional excitation in producing IR radiation, and
potentially important in the UV, as well. The approach outlined here makes
it possible to contemplate making optical measurements from the Space
Shuttle or other 1large space platforms and planning to identify and
subtract contributions from the local environment to the observed signals.
A major requirement is that some information be available about the

composition of the gaseous local environment.

.
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